Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 188(4): 1069-1080, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30315372

RESUMO

Dispersal is one of the main processes that determine community structure. Individuals make dispersal decisions according to environmental and/or social cues that reflect the fitness prospects in a given patch. The presence and abundance of heterospecifics within the same ecological guild, and/or their breeding success, may act as public information that influences movement decisions. To date, most studies investigating the role of heterospecific attraction have focused on habitat choice, using both experimental and correlational approaches. The present study is the first to examine how long-term variation in heterospecific density in breeding patches may affect dispersal patterns in spatially structured populations. We investigate how the dispersal decisions of the great crested newt (Triturus cristatus) are related to the variable density of two other newt species, the alpine newt (Ichthyosaura alpestris) and the palmate newt (Lissotriton helveticus). To examine this issue, we used capture-recapture data collected in an experimental pond network over a 20-year period. The results revealed that the great crested newt's dispersal is context dependent and is affected by variation in heterospecific density: individuals were less likely to emigrate from ponds with high heterospecific density and were more likely to immigrate to ponds with high heterospecific density. These findings suggest that individuals adjust their dispersal decisions at least partly based on public information provided by heterospecifics. This mechanism may play a critical role in the dynamics of spatially structured populations and community functioning.


Assuntos
Ecologia , Salamandridae , Animais , Cruzamento , Lagoas
2.
Evolution ; 66(6): 1942-52, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22671558

RESUMO

Populations that have suffered from genetic erosion are expected to exhibit reduced average trait values or decreased variation in adaptive traits when experiencing periodic or emergent stressors such as infectious disease. Genetic erosion may consequentially modify the ability of a potential host population to cope with infectious disease emergence. We experimentally investigate this relationship between genetic variability and host response to exposure to an infectious agent both in terms of susceptibility to infection and indirect parasite-mediated responses that also impact fitness. We hypothesized that the deleterious consequences of exposure to the pathogen (Batrachochytrium dendrobatidis) would be more severe for tadpoles descended from European treefrog (Hyla arborea) populations lacking genetic variability. Although all exposed tadpoles lacked detectable infection, we detected this relationship for some indirect host responses, predominantly in genetically depleted animals, as well as an interaction between genetic variability and pathogen dose on life span during the postmetamorphic period. Lack of infection and a decreased mass and postmetamorphic life span in low genetic diversity tadpoles lead us to conclude that genetic erosion, while not affecting the ability to mount effective resistance strategies, also erodes the capacity to invest in resistance, increased tadpole growth rate, and metamorphosis relatively simultaneously.


Assuntos
Quitridiomicetos/patogenicidade , Interações Hospedeiro-Patógeno , Ranidae/genética , Animais , Ranidae/microbiologia
3.
J Anim Ecol ; 72(4): 567-575, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30893969

RESUMO

This work aims to illustrating how it is possible to measure different modalities of adult dispersal in two subdivided populations of the alpine newt (Triturus alpestris). Recent developments in capture-mark-recapture methods make it possible to estimate transience rates from individuals captured only once. In the context of subdivided newt populations, transience is assumed to express nomadic behaviour that contribute to breeding dispersal. Skeletochronology and recaptures within each pond system also made it possible to estimate emigration rates and local dispersal. Two subdivided populations of alpine newts were monitored over 4 and 5 years, respectively. Whereas population A is suspected to have been established for more than 100 years, population B was monitored when colonizing a newly created archipelago of ponds. Transience was detected in each population at similar rates (37% in population A and 35% in the population B). Annual apparent survival rates were estimated as 82% in population A vs. 33% in population B. Similarity of age structures between populations leads us to consider such low survival rates in population B as resulting from emigration. Emigration was thus negligible in population A and was estimated to reach 57·3% in population B. Conversely, high local dispersal (movements within a pond system) was detected in population A, but not in population B. Even though the causation of dispersal in newts (genetic polymorphism vs. phenotypic plasticity) remains unexplored, our study succeeded in identifying several dispersal components that could result from different selective pressures (habitat heterogeneity at different temporal scales). Experimental approaches are needed to investigate the causative bases of these traits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...